Calculus I	Name:
Study Guide 16	Class:
Due Date:	Score:
	No Work \Leftrightarrow No Points
Use Pen	${\rm cil}{\rm Only} \Leftrightarrow {\rm Be}{\rm Neat}\&{\rm Organized}$
1. (4 points) Given $z = \sqrt{x^2 + y^2}$	$\overline{d^2}$, $\frac{dx}{dt} = 5$, and $\frac{dy}{dt} = 6$, find $\frac{dz}{dt}$ when $x = 4$ and $y = 3$
	1
· - /	ans against the side of a building. If the top of the ladder beging /sec, how fast is the bottom of the ladder sliding away from the rif 8 feet off the ground?
	2
3. Given $f(x) = \frac{4}{x+4}$.	
	n of $f(x)$ in interval notation.

Page 1 of 4 Study Guide 16 Total Points: 50

(a) _____

(b) (2 points) Find f'(x)

(b) _____

(c) (3 points) Find the points on the graph of f(x) where f'(x) = 0 or undefined.

(c) _____

(d) (2 points) Find f''(x)

(e) (3 points) Find the points on the graph of f(x) where f''(x) = 0 or undefined.

(e) _____

4. (4 points) An object is moving along the curve $y=x\sqrt{x}$. At what rate is its distance from the origin changing at the point (4,8) if its x- coordinate increases at 2 units/sec.

4

- 5. Given $f(x) = \frac{x^2 + 1}{x}$.
 - (a) (1 point) Find the domain of f(x) in interval notation.

(a) _____

(b) (2 points) Find f'(x)

- (b) _____
- (c) (3 points) Find the points on the graph of f(x) where f'(x) = 0 or undefined.
 - (c) _____

(d) (2 points) Find f''(x)

- (d) _____
- (e) (3 points) Find the points on the graph of f(x) where f''(x) = 0 or undefined.

6. (4 points) Use the accompany figure. The balloon is rising vertically at the rate of 25 m/min. Find the rate of change for the angle of elevation θ when the balloon is 100 meters above the ground.

i. ____

7. (4 points) Suppose a forrest fire spreads in a circle with radius changing When the radius reaches 200 feet, at what rate is the area of burning reg	
	7
8. Given $f(x) = \sin x + \cos x$ over the interval $[0, 2\pi]$. (a) (2 points) Find $f'(x)$	
(b) (2 points) Find the points on the graph of $f(x)$ where $f'(x) = 0$.	(a)
(c) (2 points) Find $f''(x)$	(b)
(d) (2 points) Find the points on the graph of $f(x)$ where $f''(x) = 0$	(c)
	(d)